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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Ion transit time effects in the plasma sheath 

R. ROSA 
Laboratbrio de Fisica e Engenharia Xucleares, SacavCm, Portugal 
M S .  received 11 th January 1971, in recised form 25th May 1971 

Abstract. The equation of motion of the ions in an ion-rich plasma sheath as 
well as the appropriate initial conditions that hold for all frequencies well 
below the electron plasma frequency are obtained. The problem of ion motion 
in the case when a small amplitude rf voltage is applied to the sheath is solved, 
One thus obtains the sheath admittance as a function of the plasma parameters, 
the applied dc voltage and frequency. One reaches the conclusion that, besides 
the electron contribution, there also exists an ion contribution to the sheath 
conductance and that the sheath susceptance, although dominated by a 
capacitive term, cannot be wholly ascribed to this one alone. Simple equiva- 
lent circuits are proposed to represent the plasma sheath in the low and in the 
high frequency limits. The  sheath admittance was computed over the fre- 
quency range in which the ion transit time effects arerelevant. Finally, the 
advantage in employing the rf probe technique near the ion plasma frequency 
is pointed out. 

1. Introduction 
The object of this paper is the study of the influence of the ion transit time on 

the rf admittance of the plasma sheath. 
I n  the past, rf probe techniques have occasionally been employed for plasma 

diagnostics. These techniques have certain advantages over the more conventional 
dc probing methods but a number of technical difficulties, as well as theoretical 
questions, remain on the way to the full implementation of the rf methods (Oliver 
et al. 1970). 

It has been predicted and demonstrated that the sheath presents parallel conduc- 
tive and capacitive components to an applied rf voltage (see Montgomery and Holmes 
1963, Butler and Kino 1963, Crawford and Grard 1966). 

At frequencies below the ion plasma frequency the ion current across the sheath 
is at all times in equilibrium with the applied voltage and is often assumed to obey 
Child’s law for a space charge limited flow.. For frequencies above the ion plasma 
frequency, but still below the electron plasma frequency, the ion density profile 
remains frozen and only the electrons react to the rf field. In  the light of these models, 
theoretical considerations predict a sheath capacitance which is somewhat smaller at 
higher frequencies than at lower frequencies. The sheath conductance is commonly 
supposed to be wholly associated with the electron flow and to be independent of the 
applied frequency provided this is well below the electron plasma frequency. 

Sheath properties are dominated by transit time effects at and near the two plasma 
frequencies. The rf sheath behaviour near the electron plasma frequency, when 
electron inertia produces resonance effects, is already well understood (Buckley 1966, 
1967 and Montgomery and Holmes 1963). The rf sheath behaviour near the ion 
plasma frequency, on the other hand, has received little attention so far. Some authors 
have observed an ion resonance effect which, it is hoped, may become useful in plasma 
diagnostics (Toepfer 1967). The  theory of this effect, however, is not yet completed; 
difficulty arises from this being a nonlinear phenonemon (Virmont 1969). In  this 
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paper we offer the exact solution for the small signal admittance of an ion-rich plasma 
sheath for all frequencies well below the electron plasma frequency. 

It is our belief that rf probe data obtained near the ion plasma frequency can be 
of practical interest in plasma diagnostics. In  fact, the conductance and susceptance 
components of the sheath admittance are of comparable magnitudes in this frequency 
range so that this range appears suitable for the simultaneous measurement of the 
two admittance components. In  such circumstances both the plasma density and the 
electron temperature may be obtained in one single measurement from the phase and 
amplitude of the sheath admittance. 

2. Theory 
2.1, The sheath model 

In  order to study the ion transit time effects in the plasma sheath we shall take a 
simplified model of the sheath. It will be assumed, in particular, that the electron 
density drops to negligibly small values within the sheath. This situation is actually 
approached when either the wall is biased increasingly negative or at floating potential 
if the ion mass is increasingly large. The  electron density will then drop immediately 
after crossing the plasma edge and into the sheath while the ion motion follows closely 
a simple space charge limited flow. It is well known that the ion stream past the plasma 
edge must exceed the Bohm speed c as a result of being accelerated in the small field 
of the transition region. For a zero-temperature flow the Bohm speed simply reads 
c = ( k T , / n ~ ~ ) l ’ ~  where T, is the electron temperature and in, is the ion mass (Bohm 
1949). The  electric field at the plasma edge is very small, compared with the field 
inside the sheath, provided the plasma dimensions are much larger than the sheath 
thickness. It becomes negligibly small when, once again, the wall is biased increasingly 
negative or at floating potential if the ion mass is increasingly large. 

In  the actual conditions of an electric discharge the boundary between plasma and 
sheath is ill defined. However, in the limit when the ratio of the Debye length to the 
discharge dimension vanishes the transition from the plasma region to the sheath 
region becomes abrupt. The  plasma boundary can then be clearly identified as the 
Tonks-Langmuir boundary (Self 1963, 1965). 

In  actual conditions, too, the ion flow shows a certain energy distribution that is 
associated with the particular generation mechanism and discharge geometry 
(Self 1965). Accordingly, the ion motion across the sheath cannot in general be 
wholly described in terms of a one-particle model as in the case of a zero-temperature 
flow. Moreover, the average ion velocity at the Tonks-Langmuir boundary is in 
general somewhat greater that the lower limit given by the Rohm criterion for sheath 
formation. 

We shall assume, throughout the present paper, a one dimensional (plane) sheath, 
a maxwellian electron gas, a cold beam of singly charged ions entering the sheath at 
the Bohm speed c and a collisionless regime. 

For the study of the ion transit time effects in the sheath it is necessary to solve the 
equation of motion of the ions in the presence of a perturbation. 

Take as coordinate system an x axis normal to the plane of the sheath, directed 
from the plasma to the wall, and place its origin at a very short distance dx from the 
equilibrium position of the plasma edge, just inside the sheath (see figure 1). The 
plasma edge will move when a perturbation is imposed. However, we shall restrict 
ourselves to a very small perturbation, so small that the plasma edge will always stay 
within a distance dx from its equilibrium position. 
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For each quantity q of equilibrium value qo take perturbations of the form 
q1 exp iot. The  angular frequency w is always real but q1 will in general be a complex 
number. We limit ourselves to perturbations of vanishingly small amplitude so that 

Plasma I 

0 X 

Figure 1. The plasma and an ion-rich sheath next to a negatively charged wall. 

our equations can be linearized throughout. The distance dx from the coordinate 
origin to the equilibrium position of the plasma edge is supposed to approach zero 
together with the perturbation amplitude. 

2.2. The equation of motion 
Ions entering the sheath move under the field produced by the charges on the 

wall and by the charges in the space. The  influence of the space charge is governed 
by Poisson’s equation 

where e denotes the elementary electric charge ( e  > 0) and n, the ion number density. 
The  total current density, convection plus displacement, is 

aE 
J = j i - je+eo-  

at 

where ji and j ,  are the ion and electron contributions to the convection current 
( j ,  > 0). It is well known that total current is everywhere continuous though it 
exists in different forms in different regions. One accordingly has 

aJ _ -  - 0. 
ax (3) 

Elementary considerations show the electron transit time in the sheath to be of the 
order of one period of the electron plasma oscillation so that, in order to neglect 
electron inertia, we shall restrict ourselves to frequencies well below the electron 
plasma frequency. This being the case, the electron current through the sheath is at 
every moment in equilibrium with the instantaneous field and must therefore satisfy 
a continuity equation of the form 

- = 0. 
ax 
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Consider an observer moving with the ion beam. He would see a changing field 
given by the total derivative in the Eulerian variables (x, t) 

dE(x, t )  aE aE + 2‘1 - 
dt at 8x 

-- _ -  

ci being the ion speed. From this and equations (1) and (2) it follows that 

dE(x, t) 1 -- - - ( J + j e ) .  
dt €0 

Changing from Eulerian variables (x, t) to Lagrangian variables (t, to), where to 
is the time at which the ion beam crosses the surface x = 0, one can replace the fore- 
going equation by 

aE(t, to) 1 
at €0 

Now, the equation of motion for the ion beam reads, in Lagrangian variables 

-- - - ( J + j e ) .  

mi being the ion mass. Taking its derivative and replacing the field for the current one 
arrives at 

The right hand side of this equation is a function of t alone because J and j e ,  being 
independent of x: (equations (3) and (4)), are also independent of to. This equation 
is readily integrated along the path of the ion beam, for any initial time to,  leading to 
the complete description of the ion motion in the sheath. Not surprisingly equation 
( 5 )  is, apart from the electron current term, identical to ‘Llewellyn’s equation’ that is 
often used in connection with the kinetic description of diode regions (Lletvellyn 
1941). 

2.3. The initial conditions 
When crossing the plane x = 0 at time t = to the ion beam has a certain initial 

speed v,(to) and acceleration ai(to). 
It should be noticed that the rf field does not penetrate the plasma region pro- 

vided the frequency is well below the electron plasma frequency (Montgomery and 
Holmes 1963). The  initial velocity perturbation is therefore entirely due to the 
acceleration by the field in the thin layer between the plasma edge and the plane 
x = 0. Taking aE/ax = eni/Eo and dv, = eE dtlm, one can estimate 
dvJc < aiz dx2/c2, where Isi = (e2ni/EOmi)1’2 is the ion plasma frequency at the 
plasma edge. We see that dvi is of the second order in dx. Hence it follows that the 
equilibrium value and the first order perturbation of the initial velocity are, in the 
limit when dx -+ 0 

2’10 = c vi1 = 0 (t = t o ) .  (6 )  
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With regard to the initial ion current density one can see, invoking the ion con- 
tinuity equation 8ni/6t+ 2(niui)/8x = 0 and following an argument similar to the 
previous one, that one has 

j , ,  = enic jil = 0 ( t  = to )  

where n, refers to the plasma edge. 
Consider next the equation for total current density (equation (2)) at the plane 

x = 0. T o  first order and in view of equation (7)  it simply reads J1 = -jel +eo aE,/ at. 
If one introduces the ion acceleration ai = eE/mi and takes the limit dx -+O one 
arrives at 

a,, = 0 

Equations (6) and (8) are the appropriate initial conditions for the ions crossing 
the plane x = 0 at an initial time t = to. 

2.4. The electron current 
Consider the electron current in a little more detail now. Let V denote the poten- 

tial drop across the sheath and define 71 3 eV/kT, (V ,  7 > 0). The  electron gas being 
maxwellian and the electron inertia being negligible, the instantaneous current to the 
wall is 

where ne is the electron density at the plasma edge, T ,  the temperature of the electron 
gas and me the electron mass. 

I n  equilibrium, equating the electron and ion currents and imposing charge 
neutrality at the plasma edge (ne = ni) one obtains the floating potential 

For very small perturbations of the applied voltage, everything else being constant, 
one hasj,, = - jeoql .  It can easily be verified that this electron current perturbation 
can be written in the form 

that will be of use further on. 

2.5. The sheath structure 
The integration of the equation of motion ( 5 )  subjected to the appropriate initial 

conditions (6) and (8) is straightforward and can be found elsewhere. See, for instance, 
the work of Birdsall and Bridges (1966) where the integration of ‘Llewellyn’s equa- 
tion’ is dealt with in detail. One eventually arrives at the solution of the ion motion 
x = x( t ,  to). It is now convenient to define the sheath thickness X and the ion transit 
time across the sheath ri, these two quantities obviously satisfying the condition 
X ( t )  = x(t, t - ~ ~ ) .  For the case of the steady state sheath one obtains 
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where X 
tial drop across the sheath 

r I i~io.  Once the ion motion is fully known one can next obtain the poten- 

t -  21 p x  ax 

mi e s at2 at, 
V ( t )  = - -- dt,, 

At equilibrium, this simply reads 

Equations (1 1) and (12) give a full description of the steady state sheath structure, 
On the basis of these equations one finds that when qo 8 1 the voltage against current 
characteristic approaches Child’s law. It can also be verified that the mean electric 
field in the sheath increases with the applied voltage in spite of the growing sheath 
thickness. Thus it becomes clear that the condition qo 8 1 should be satisfied in 
order to justify two of the hypotheses upon which the present sheath model is based, 
namely, negligible electron density in the sheath and negligible electric field at the 
plasma edge. 

2.6. The sheath admittance 

as the transit angle of the ions in the sheath. 
It is now convenient to define the dimensionless parameter 8 = T ~ ~ W  that is known 

The potential drop across the sheath is, to first order 

+ iO(exp( - if?) + l} + 2{exp( - io) - l} (13) 

Introducing the (small amplitude) sheath admittance (per unit area) Y E Jl/Vl 
and replacing the electron current with the help of equation (10) one finally arrives at 

This is the formula for the sheath admittance which we wanted to obtain, The  first 
term of Y is frequency independent and stands for the sheath conductance associated 
with the intertia-free electron flow G,. The  second term of Y is a complex quantity. 
Its imaginary part represents the sheath susceptance B and its real part the ion 
contribution to the sheath conductance Gi. Of course, Y = G, + Gi + iB, where 
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G, is determined by the applied dc voltage alone and is made increasingly small when 
biasing the probe increasingly negative. Both B and Gi depend on the applied fre- 
quency too. B can be interpreted, to a good approximation, as being capacitive. 
Gi is rather more complicated, however, in that it cannot be easily interpreted in 
terms of an equivalent circuit. 

3. Results and discussion 
3.1. The sheath equivalent circuit 

It is our purpose now to seek an equivalent electrical circuit to represent the 
sheath rf behaviour. 

T o  start with, it is obvious from equation (14) that the sheath is a parallel asso- 
ciation of two components the first of which is the conductance term due to the elec- 
tron flow, G, = l/Re. With regard to the second component in this parallel associa- 
tion it is convenient to begin with a few general remarks concerning equivalent 
circuits. 

Given a physical system there may exist an admittance or an impedance function of 
the form Y(iu) or Z(iu). These functions may admit a series expansion in the 
neighbourhood of the origin. Suppose one can select a certain neighbourhood where 
the only relevant terms of the expansion are the -1, 0 and + l  powers of io .  One 
can then speak of either a parallel or a series equivalent circuit, in that particular 
neighbourhood and to a specified degree of accuracy, comprising a capacitive, a 
resistive and an inductive term. Of course, this argument can be extended to the 
study of the asymptotic behaviour of those same functions. 

We applied this kind of analysis to the second parallel component of the sheath 
and arrived at the conclusion that this can indeed be given an equivalent circuit 
interpretation but under certain restrictive conditions only. At high frequency, the 
second component approaches a simple capacitance that is given by 

E 
C(C0) = 0 

XO 
per unit area. This approach is affected by an error smaller than 10% for 0 > 11. 
The  sheath behaves as though it were a capacitor with no dielectric. At low frequency, 
the second component approaches a series association of a capacitance, an inductance 
and a resistance that are given by 

co(l  +X2/6)  
XO 

C(0) = 

c ~ ~ T , ~ ~  

40ro 
L(0) = - -__ 

Ch”io2 
Ri(0) = ~ 

126, 

per unit area. This approach is affected by an error smaller than 10% for 6’ < 1.2. 
We can therefore propose for the plasma sheath two equivalent circuits, one 

holding in the low frequency limit and the other one in the high frequency limit. The 
arrangement and nature of the circuit elements are shown in the diagrams on figure 2 
while their values are given by equations (15), (16) and (17). 
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3.2. Some numerical results 
The complex function - (Bz/X2)Y-1( A, 0 )  represents in equation (14) the ion 

conductance plus the susceptance of the normalized sheath admittance Y/(coIT,2/c). 
That function was tabulated by an automatic numerical method with the help of a 

C(C0) 
( b )  

Figure 2. The equivalent circuit of the plasma sheath in (a) the low frequency 
and (b)  the high frequency limits. The values of the circuit elements are given 

in equations (15), (16) and (17). 

PDP-15 computer in this laboratory. On the basis of these data the normalized ion 
conductance Gi/(c0IT,2/c) and the normalized sheath susceptance, B / ( E ~ I I ~ , ~ / C ) ,  were 
plotted against B and for different values of the parameter h as shown in figures 3 
and 4. The  values given to this parameter are X = 2, 3 and 4 which, according to  
equation (12), refer to the values v o  = 4, 14.6 and 40 of the applied dc bias. 

The  ion conductance (see figure 3) exhibits a pronounced oscillating behaviour along 
the B axis but it damps out and tends asymptotically to zero as the frequency increases. 

-0 05- 1 

I 1 I I 1 

r 3r 5r 
0 

Figure 3.  The ion contribution to the normalized sheath conductance 
G , / ( ~ ~ n , ~ / c )  against the transit angle 6 of the ion in the sheath. The plotted curves 

are labelled with the value of the parameter A. 
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One should notice that the zerob of the ion conductance do not depend on the parti- 
cular value of A. Notice also that whenever the transit angle equals an even multiple 
of IT one has a zero and a sign reversal. 

I I I I 1 I I 
n 3r 5r 

e 
Figure 4. The normalized sheath susceptance’B/(d i2/c) against the transit angle 
0 of the ion in the sheath. The plotted curves are labelled with the value of the 

parameter A. 

The susceptance (see figure ,4), though oscillating, is a monotone increasing 
function along the 8 axis. At both the low and the high frequency limits the susceptance 
is proportional to the frequency thereby implying a low frequency and a high fre- 
quency equivalent capacitance C(0) and C(a) respectively. The ratio C(O)/C(m) 
obtained numerically is found to equal (1 + A2/6) in accordance with what can be 
deduced from equations (15) and (17). 

3.3. The rf probe method near the ion plasma frequency 
We wish to emphasize the advantage in employing the rf probe technique at 

frequencies near the ion plasma frequency. 
It has become clear by now, in the light of the foregoing theory, that the con- 

ductance and the susceptance of the sheath are two quantities of comparable magni- 
tude at frequencies of the order of the ion plasma frequency. That is not the case at 
very low or at very high frequencies when either the conductive term or the capacitive 
term alone dominate the sheath behaviour. 

One can therefore say that rf probe measurements near the ion plasma frequency 
yield both the conductance and the susceptance of the sheath thus offering the possi- 
bility of obtaining the simultaneous measurement of the electron temperature and 
the plasma density. 

In order to illustrate this possibility consider a rf probe operating at floating 
potential r ) ,  = yo* and at a fixed frequency w. Given a singly ionized species of 
known ion mass mi there corresponds a specific floating potential r),* (equation (9)). 
It then follows that, in view of equation (12), A, = lliTio will also be a constant and 
that 0 = T i 0 0  will vary as the reciprocal of ll,. Now, recallkg equation (14) one 
realizes that the normalized sheath admittance Y/(E,,IINc) is a function of fIi only, 
that is to say, of the ion density at the plasma edge. One draws the conclusion that, 
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under the stated circumstances, the phase angle of the sheath admittance is a measure 
of the plasma density. The electron temperature can then be obtained from the 
magnitude of the sheath admittance. 
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